US009262271B2

a2z United States Patent (10) Patent No.: US 9,262,271 B2
Southern (45) Date of Patent: Feb. 16, 2016
(54) METHOD OF IMPROVING FAULT 9,099,160 B2* 82015 Mallary ............ B82Y 10/00
TOLERANCE IN A COMPUTING SYSTEM 2011/0252268 Al* 10/2011 Avizienis ............ GO6F 11/701749/3
ARRANGED TO FIND A COMPUTATIONAL 2011/0302450 Al  12/2011 Hickey et al.
SOLUTION 2013/0128372 AL* 52013 Mallaty ..ccooorec.... BS2Y 10/00
360/31
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 2013/0173974 Al* 72013 Sul ..o G11C 29/003
Kanagawa (JP) 714/719
2013/0297976 Al* 112013 McMillen ............. GO6F 11/079
. ; : 714/43
(72) Inventor: James Alastair Southern, Reading (GB) 2015/0242747 Al* 82015 Packes .......... . G06Q 50/16
706/17
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)
. . Lo . FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 CN 101075206 11/2007
U.S.C. 154(b) by 140 days. WO WO 2006/055026 Al 5/2006
WO WO 2008/129359 A2 10/2008
(21) Appl. No.: 14/264,559
OTHER PUBLICATIONS
(22) Filed: Apr. 29, 2014 H. Ltaief et al., “Fault Tolerant Algorithms for Heat Transfer Prob-
g
(65) Prior Publication Data ler?s (STe.chmcai iep[(}n. No..tI}J]H-f(i{S-07t-03)Z Dez%a(;“;ment ;)fl(éom(;
puter Science at the University of Houston, Apr. , pp. 1-16 an
US 2014/0344618 Al Nov. 20, 2014 cover sheet.
C. Wang et al., “Proactive Process-Level Live Migration in HPC
(30) Foreign Application Priority Data Environments”, Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, Nov. 2008, 12 pages.
May 17,2013 (EP) oo 13168261 (Continued)
(51) Imt.ClL
GO6F 11/00 (2006.01) Primary Examiner — Christopher McCarthy
(52) IGJ0S6FCf1/14 (2006.01) (74) Attorney, Agent, or Firm — Staas & Halsey LLP
CPC ....... GO6F 11/1412 (2013.01); GO6F 11/1479
(2013.01) 57 ABSTRACT
(58)  Field of Classification Search A method of improving fault tolerance in a computing system
CPC ... s GQ6F 11/1412 arranged to find a computational solution, the method com-
I file f I h h £ P
See application file for complete search history. prising: computing at least two versions of the solution by
. using a hierarchy of at least two different solvers in parallel;
(36) References Cited and if there is a fault during execution of a solver resulting in
U.S. PATENT DOCUMENTS a miss.ing Valye, substituting a value frqm a solver that is
lower in the hierarchy to replace the missing value.
7,565,657 Bl 7/2009 Leung et al.
8,843,423 B2* 9/2014 Chu ................. GO6N 99/005
706/12 15 Claims, 8 Drawing Sheets

| process | | process | | process |

| process |

| process | || process | | [ process |

f process |

| process |

mpule accyrate solutior

LY

faster

hierarchy | process | | process |

more
accurate

Tewer nodes

[ process | {isss vulnerable

compute fast solution

1o failure)

DIOCESS

compute very
fast solution




US 9,262,271 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

D. Fiala et al., “Detection and Correction of Silent Data Corruption
for Large-Scale High-Performance Computing”, Proceedings of the
International Conference on High Performance Computing, Net-
working, Storage and Analysis, Nov. 2012, 12 pages.

J. W. Larson et al., “Fault-Tolerant Grid-Based Solvers: Combining
Concepts from Sparse Grids and MapReduce”, Procedia Computer
Science, vol. 18, 2013, pp. 130-139.

Extended European Search Report mailed Feb. 19, 2014 in corre-
sponding Furopean Patent Application No. 13168261.9.

* cited by examiner



U.S. Patent Feb. 16, 2016

solver 1

computations 4

%
\\\i—.n‘

e

Sheet 1 of 8

US 9,262,271 B2

computations
4

7
e ) /

e

L~

stage A

/f‘

failure

suhshitution
..---"“"'""‘““'““'“-...\

continuing
computation

stage B

cortinuing
computation

S

Solution

stage C

HIERARCHY

FiG. 1



US 9,262,271 B2

Sheet 2 of 8

Feb. 16, 2016

U.S. Patent

¢ Ot

7 uognios ise)
Aien andwos

353000

i

LORNIoS 158 sindwon

(sinye; o)
BiGEIBUINA §59)) SEIn008
" v N
SSPOL JOMB) oL m 5890044 m $8500id _ m 358004 Ayosessny
gy

lfﬂii@ﬂiﬂ!ﬁiﬁiﬂi&ﬁ\bﬁ\\\\\

PO R s S
OBNICS S1E0IE Shnduwch

| ssa004d |

ssaoaid |11 sse00ud 1] | ssaooud

| 5880014 |

e [sseoid | [sseood | [sseooid | [sseoad] o~




U.S. Patent Feb. 16, 2016 Sheet 3 of 8 US 9,262,271 B2
Current Situation
! 1 No
Parform Was thera | . 1 Hasprogram { v,
angﬁgiétsar;on = paraliel afauitin (-0 reached el Solution
i computation axscution ? completion 7
10 ) Ve | ) S50
520 ¥ 830 S50
540~ Application
crashes
FiG. 3a
Situation Using Invention
¥ No
Copy Perform e I
Start | acaae acourate ‘v‘u?s "i{‘?re No Hasﬂpxﬂgggam 8 soiution
application solution to naraliel 1 efegéiﬁf? ] wf:&gfgp? B
= fast soluion}} 1computation ek Mpreuc: =
3100 syl £ laiand N 8170
$110 | = 1781300 51g0
Periorm fast] | Mk dccurate -
§1207~ parlel kel o e
F ompital from fast 1
S140- ~S150
FiG. 3b
0.015
0.01¢
Q.005¢/
0
—2 Of
-3.005
-0.01 S crank-nicolson
messessecn {31 |{-L0RR1ANY
0.015

g 01 02 03 04 05 08 67 08 09 1
X

FIG. 4a



U.S. Patent Feb. 16, 2016 Sheet 4 of 8 US 9,262,271 B2

uuuuuu orank=nicolscn
fauit-dolerant

error

e o
o <
H 3

-l
B
¥

¢ 01 02 03 04 05 086 07 08 08

X
FIG. 4b

28“05 i ¥ ) 3

X
1.5e-05¢ ]

(
X
i

te-05

(s emor

X X XX X XX E X 3K 8B %

Se-061 7

b8

a0 101 102 103 104 106
# of faults

FIG. 5



U.S. Patent Feb. 16, 2016 Sheet 5 of 8 US 9,262,271 B2

0015 ¢
0.01
0.005
i
= 0
=

o moww o w CTATK-NICOISON
fauit-iolarant

~{3.01

_DIG»‘EE) H ] 3 ] ” L i 3 H i

g 01 02 063 04 05 08 07 08 &9 1
X
Fi(s. Ba
x10-4
14

~ e e = FATK-HGDISOR
fauit-folerant

1.2

0.8

erer

08

0.4

0.2

o 01 . 1
X

FIG. 6b



U.S. Patent Feb. 16, 2016 Sheet 6 of 8 US 9,262,271 B2

10'4 T ¥ ¥ §
® i
X
* *
. x x X
o x
o 105F X . ;
= X N
X WX O K X % ¥
‘EO-B s i 3 5
100 H 104 103 104 105
# of faulls
FIG. 7
G0ta
(.01
(0.005
E 5.;53'
= -(3.005
-3.01
-------------- gxact
aQois- R e crankenicoison
' fault-iolerant
-3.02 ‘ ‘ ‘ * ; : : i : ;
0 01 02 03 04 05 08 07 08 08 1

X

Fi(z. 8a



U.S. Patent Feb. 16, 2016 Sheet 7 of 8 US 9,262,271 B2

x10-3
18¢
N T cranfenicolson
16} e faulttolerant




U.S. Patent Feb. 16, 2016 Sheet 8 of 8 US 9,262,271 B2

Processing unit S
M ; v
70 e B N
unit - i
80
B 90
Memory
’E\?E 0 Frocess O
H
60
=‘§§§§sres —ts inferconnect
P - .
i 100
Processing unit =
70 ;
He; B -
a0 unit 1 B
B 90
Memory
Process n
k‘\
6l

FiG. 9



US 9,262,271 B2

1
METHOD OF IMPROVING FAULT
TOLERANCE IN A COMPUTING SYSTEM
ARRANGED TO FIND A COMPUTATIONAL
SOLUTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of European Applica-
tion No. 13168261.9, filed May 17, 2013, the disclosure of
which is incorporated herein by reference.

BACKGROUND

1. Field

The present invention relates to fault resilience in comput-
ing systems. Fault-resilient computer programs are required
in a wide range of application areas, for instance from simple
computations to image rendering and large-scale, complex
simulations, including on-the-fly and offline processing. As
one important example, mission-critical jobs (e.g. opera-
tional weather forecasting) or systems (e.g. the internet) must
be resilient to failure. This invention addresses the whole
gamut of these application areas, and is focused particularly
on distributed, parallel computer programs running on very
large high-performance computing systems with data distrib-
uted over a number of CPUs.

2. Description of the Related Art

Computationally intense applications are usually carried
out on high performance computer systems. Such high per-
formance computer (HPC) systems often provide distributed
environments in which there is a plurality of processing units
or cores on which processing threads of an executable can run
autonomously in parallel.

Many different hardware configurations and programming
models are applicable to high performance computing. A
popular approach to high-performance computing currently
is the cluster system, in which a plurality of nodes each having
one or more multicore processors (or “chips™) are intercon-
nected by a high-speed network. Each node is assumed to
have its own area of memory, which is accessible to all cores
within that node. The cluster system can be programmed by a
human programmer who writes source code, making use of
existing code libraries to carry out generic functions. The
source code is then compiled to lower-level executable code,
for example code at the ISA (Instruction Set Architecture)
level capable of being executed by processor types having a
specific instruction set, or to assembly language dedicated to
a specific processor. There is often a final stage of assembling
or (in the case of a virtual machine, interpreting) the assembly
code into executable machine code. The executable form of
an application (sometimes simply referred to as an “execut-
able”) is run under supervision of an operating system (OS).

Applications for computer systems having multiple cores
may be written in a conventional computer language (such as
C/C++ or Fortran), augmented by libraries for allowing the
programmer to take advantage of the parallel processing
abilities of the multiple cores. In this regard, it is usual to refer
to “processes” being run on the cores. A (multi-threaded)
process may run across several cores within a multi-core
CPU. One such library is the Message Passing Interface, MPI,
which uses a distributed-memory model (each process being
assumed to have its own area of memory), and facilitates
communication among the processes. MPI allows groups of
processes to be defined and distinguished, and includes rou-
tines for so-called “barrier synchronization”, which is an
important feature for allowing multiple processes or process-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing elements to work together. Barrier synchronization is a
technique of holding up all the processes in a synchronization
group executing a program until every process has reached
the same point in the program. This is achieved by an MPI
function call which has to be called by all members of the
group before the execution can proceed further.

Alternatively, in shared-memory parallel programming, all
processes or cores can access the same memory or area of
memory. In a shared-memory model there is no need to
explicitly specify the communication of data between pro-
cesses (as any changes made by one process are transparent to
all others). However, it may be necessary to control access to
the shared memory to ensure that only one process at a time
modifies the data. In a “threaded” shared memory program-
ming model, such as OpenMP, a single process can have
multiple, concurrent execution paths (possibly one thread of
execution per physical core available to the process).

The latest generation of supercomputers contain hundreds
of'thousands or even millions of cores. The three systems on
the November 2012 TOP500 list with sustained performance
over 10 Pflop/s contain 560,640 (Titan), 1,572864 (Sequoia)
and 705,024 (K computer) cores. In moving from petascale to
exascale, the major performance gains will result from an
increase in the total number of cores in the system (flops per
core is not expected to increase) to 100 million or more. As the
number of nodes in the system increases (and especially if
low-cost, low-energy nodes are used to maintain an accept-
able power envelope) the mean-time-to-component-failure of
the system will decrease—eventually to a time shorter than
the average simulation run on the system. Hence, it will be
necessary for exascale software to be resilient to component
failure.

There are several methods that may be used to achieve
fault-resilient exascale application software. These include:

Improvements to MPI to automatically handle component
failure in a manner that is invisible to the application.

Development of new algorithms that can be implemented
within software to allow it to compensate if one (or
more) MPI task suffers a fault during execution.

Improved methods to frequently (and rapidly) checkpoint
massively parallel simulations in order that they can be
restarted from a point immediately prior to the fault.

Replication of work, so that tasks are identically executed
by more than one processing element—if one process-
ing element suffers a fault then the result from the other
is generally still available.

The use of task pools with reassignment, where a master
process coordinates the execution of independent tasks
and can reassign a task where the processor originally
assigned the work fails.

There are problems with each of these prior art methods.
An automatic MPI response to a fault may not be optimal for
a particular application, so a developer may prefer to retain
control of how faults are dealt with. Checkpointing (espe-
cially on very large systems) is time consuming and—if a
fault occurs just before a checkpoint is due (or during a
checkpoint)—may result in a large amount of computation
having to be repeated. Replication of work is also expen-
sive—and if the entire program function must be duplicated
for fault resilience then, in effect, the available computing
power is halved. Task pools with reassignment avoid the need
to duplicate so much work, but for some applications (espe-
cially the very large applications expected to run on exascale
systems) it may not be possible to break the work up into
sufficiently fine-grained independent tasks.

The inventor is aware of a related-art method for algorithm-
based fault-tolerance based on the combination method. In



US 9,262,271 B2

3

this method, the combination method is used within a solver
to overcome faults: solutions are computed on several coarse
grids, and combined to produce a more accurate solution. A
component failure in any one grid reduces the accuracy of the
combined solution, but only within a known tolerance. How-
ever, there are drawbacks to this method also. In particular:
It assumes that there is an underlying grid in the simulation.
This is not necessarily the case for a general application.

Failure of one node leads to other nodes also being unable
to contribute to the solution (and nodes computing the
solution on the coarse grid which the faulty node was
working on are unused). If there are a large number of
coarse grids this may not be a significant problem, but in
general an application will want to exploit all resources
available to it.

It is desirable to enable a simulation running over a plural-
ity of processors to run to completion (and retain sufficient
accuracy) even when one (or more) of the processors suffers
a fault. This would be applicable particularly in exascale
computing, in which applications such as simulations will be
required to be run using many millions of processors and the
likelihood of a small number of failures while the simulation
is running is high.

SUMMARY

Additional aspects and/or advantages will be set forth in
part in the description which follows and, in part, will be
apparent from the description, or may be learned by practice
of the invention.

This invention proposes a new methodology that can be
implemented to allow software to cope with a fault.

Embodiments of one aspect of the invention provide a
method of improving fault tolerance in a computing system
arranged to find a computational solution, the method com-
prising computing at least two versions of the solution by
using a hierarchy of different solvers in parallel; and if there
is a fault during execution of a solver that is higher in the
hierarchy resulting in a missing value, substituting a value
from a solver that is lower in the hierarchy to replace the
missing value.

The inventor proposes herein a methodology that can be
implemented within solvers within computing software such
as HPC software to allow an application to run to completion
even if one (or more) nodes, cores, CPUs, FGPA, GPU or
other processing units of the system fail. Note that the term
“solver” here does not necessarily refer to the solution of a
mathematical equation—it could equally apply to any com-
putation (e.g. data processing or image rendering).

Algorithm-based fault-tolerance (ABFT) is a current area
of research and some of this research is for applications that
use a grid (e.g. solution of partial differential equations, PDEs
via finite element, finite volume and finite difference meth-
ods) Such ABFT developments have the potential to solve
multiple problems on coarser grids and combine them to
produce a more accurate result—allowing grids that experi-
encea fault to be discarded in the final solution. Such methods
cannot, however, be immediately applied to applications that
are not based on a grid (e.g. particle-based methods used in
computational fluid dynamics (CFD) or computational chem-
istry). The present invention is a fault-tolerant methodology
for general use with HPC and other applications—including
those that do not use a grid.

The inventor has come to the realization that the main
technical issue relating to fault-tolerant application execution
relates to loss of data when a node or other processing unit
fails. This leads to the inability to communicate this data.

10

15

20

25

30

35

40

45

50

55

60

65

4

Re-starting computation would be relatively easy if the data
immediately before failure were available. In many distrib-
uted applications, each process performs inter-related tasks
within an algorithm—and frequent communication of data
from other processes is a critical part of the algorithm. If a
process fails then how can other processes deal with the
missing information that they expected to receive from that
process? A second technical issue relates to completion of the
computation that the application is expecting to be carried out
on the failed process. Even if there is no further communica-
tion required from this process, its output forms a part of the
overall solution and this must be recreated in order for the
application to complete successfully.

Fault-tolerance is currently not a part of the MPI specifi-
cation (http://www.mpi-forum.org/docs/). However, as men-
tioned above, various fault-tolerant MPI implementations do
exist (e.g. fault-tolerance is part of OpenMPI: http://ww-
w.open-mpi.org). In general, these are based on automated
checkpoint-restart technology and message-logging and
result in a slowdown of application execution. Once a fault is
identified it is necessary to repeat all the computation on the
failed process and all communication to and from it since the
last checkpoint. While this is happening the remaining pro-
cesses must wait (as they cannot proceed until they have
received the messages required from the failed process).

Hence, algorithm-based fault-tolerance according to
invention embodiments, in which an application may be able
to recognize a fault and recover from it rapidly, is valuable for
augmenting the fault-tolerant MPI implementations (fault-
tolerant MPI may still be used in order to notify the applica-
tion of a fault and to ensure an orderly shut-down of the faulty
node).

The invention embodiments use a hierarchy of different
solvers. That is, each solver does not function in the same
way, but uses a different method from the other solvers, so
there is no duplication of solvers. A solver that is higher in the
hierarchy gives a better result, and is used for the solution,
whereas a solver that is lower in the hierarchy is essentially
for fault resilience purposes. For example, there may be two
solvers in the hierarchy, one of which gives a better result by
use of a preferred methodology.

In preferred embodiments, two different solvers are a less
accurate solver and a more accurate solver and if there is a
fault during execution of the more accurate solver resulting in
a missing value, a value from the less accurate solver is
substituted to replace the missing value.

If the solver that is lower in the hierarchy is less accurate,
the resources needed for fault resilience may be considerably
lower than required for an equivalent redundant implementa-
tion with two identical solvers. The solution eventually used
by the application is, naturally, that of the more accurate
solver, which is higher in the hierarchy.

Substitution of a value from the less accurate solver is
preferably from the adjacent lower solver in the hierarchy, but
in some embodiments with more than two solvers, if there is
also a fault in the adjacent lower solver, a value from the
solver below that solver may be provided.

Taking embodiments with two solvers as an illustration,
some of the available processes can compute an “accurate”
(more accurate) version of the solution (exactly as in a stan-
dard, non-fault-tolerant execution). However, other processes
can instead compute a “fast” (less accurate) version of the
solution. Computation of the fast solution should require less
time than that of the accurate solution. In preferred examples,
computation of the fast solution may require at least one order
of magnitude less time than that of the accurate solution.



US 9,262,271 B2

5

Time savings could be achieved by one or more of the
following:

Use of an explicit method for the fast solution (versus

implicit for the accurate solution).

Use of a larger time step in the fast solution (versus smaller

for the accurate solution).

Use of single precision arithmetic in the fast solution (ver-

sus double precision for the accurate solution).

In grid-based solvers, use of a coarser grid in the fast

solution (versus a finer grid for the accurate solution).

Only process a subset of the data in the fast solution (versus

all of the data in the accurate solution).

Use of a looser convergence criterion in the fast solution

Use of any other less computationally intensive approxi-

mation in the fast solution (while retaining the required
accuracy in the accurate solution).

Thus in many examples, the less accurate solver uses a
computationally less intensive approximation than the more
accurate solver to compute the solution.

If a process involved in computing the accurate solution
suffers a fault then the corresponding current data from the
fast solution can be rapidly accessed in its place. Preferably, a
controlling application (which may be the application run-
ning the hierarchical solvers) manages the substitution fol-
lowing failure, to provide a current value from the solver that
is lower in the hierarchy to substitute into the computation in
the solver from which the value is missing.

Substitution may be effected in any suitable way, for
instance by direct replacement with a corresponding actual
value from the less accurate solution or by calculation of a
replacement value interpolated from the actual values of the
less accurate solution.

In one example, the less accurate solver can have the same
discretization of the problem, but use a faster (and less accu-
rate) time-stepping method. So, there is a one-to-one corre-
spondence between the two solutions—and if component na
of'the accurate solution is lost then it can be directly replaced
by component nf of the fast solution. Hence component nf is
the value which is substituted for missing value na

In general, this may not be the case (e.g. there may be a
finer discretization for the accurate solution and a coarser
discretization for the fast solution). In this situation, the con-
trolling application can maintain a mapping that defines how
the accurate solution can be approximated from the fast solu-
tion. For example, if the accurate solution is to be computed
by interpolation from more than one component of the fast
solution then the application can have a pre-calculated map
identifying which components of the fast solution (and with
what weight) should be used in interpolation of each compo-
nent of the accurate solution, to give a current value for
substitution.

The computing system according to invention embodi-
ments may comprise multiple processing units, such as
CPUs. The computing system may be a high performance
computing HPC system. In one embodiment, each processing
unit may be a core of a multi-core CPU. In another embodi-
ment each processing unit may be a node in a computing
system. In further embodiments the processing units may be
any combination of CPU, FGPA, GPUs or other processing
units.

For load-balancing or other purposes, the less accurate
solver can execute on a different number of processing units
than the more accurate solver, such as fewer processing units.
This arrangement has the additional advantage that the less
accurate solution may be less vulnerable to failure because it
requires less communication between processing units.

10

15

20

25

30

35

40

45

50

55

60

65

6

As mentioned above, the less accurate solver is likely to
require fewer computing resources, and thus execute more
quickly than a solver higher in the hierarchy when using the
same number of processing units. The execution speed of the
two solvers can be made more consistent by dividing the more
accurate solver execution into more parallel processes. Thus
each solver may execute in a number of processes hosted on
the computing system, the less accurate solver being split into
fewer processes. To reduce redundancy, the difference
between the solvers can be such that less accurate solver
processes account for less than 20%, more preferably less
than 10%, most preferably less than 1% of'the total number of
processes for both solvers.

Faults in processes computing the fast solution are less
likely (as they represent only a small percentage of the total
number of processes), but these can be recovered from in
several ways:

Reconstruction from the accurate solution.

Duplication of computation for the fast solution.

A further layer of processes in the hierarchy that compute

a “very fast” solution, much faster (but less accurately)
than the fast solution is computed.

Thus although the previous examples refer to a hierarchy of
two solvers, any number of solvers may be provided within
the hierarchy, for example, 3, 4 or 5 solvers may be used. In
one example, three or more different versions of the solution
are computed using a hierarchy of three or more solvers of
different accuracy levels, the method comprising: computing
three or more versions of the solution by using all the solvers
in parallel; and during execution of the solvers, substituting a
value from a less accurate solver to replace a missing value in
the more accurate solver one level in the hierarchy above the
less accurate solver in the hierarchy.

Alternatively or additionally (perhaps for the fastest solver
which is the lowest in the hierarchy) during execution of the
solvers, the method of invention embodiments may include
substituting a value from a solver that is higher in the hierar-
chy or from a duplicate solver for a solver that is lower in the
hierarchy to replace a missing value in the solver that is lower
in the hierarchy. Hence a value from the more accurate of two
solvers or a value from a duplicate solver for the less accurate
solver may replace a missing value in the less accurate solver
resulting from a fault in the execution of that solver.

Advantageously, at least the more accurate solver method-
ology includes periodic synchronization of values across its
computation, and the less accurate solver is periodically
refreshed with the most recently synchronized values from
the more accurate solver. For example in iterative calcula-
tions, this refreshing procedure may take place in the same
iteration (loop) as the fault, or once every X loops, where X is
one or more. The same controlling application and mapping
methodologies as mentioned above for substituting values
can be used for refreshing values in the less accurate solver.

Incidentally, for such iterative solvers with periodic syn-
chronization between the fast and the accurate solvers, it is
still advantageous to replace any missing value in the less
accurate (fast) solvers, even though all the values will be
refreshed at the end of the loop. The fast solver will need these
values to continue to compute its approximation and these
will be required in the event of any failures in the accurate
solver before the refresh.

The solvers in the hierarchy can use any suitable numerical
methods. However, since the solver(s) lower in the hierarchy
are not used for the final solution, some usual constraints
applied to selecting a solver need not apply. For example, the
solver(s) lower in the hierarchy may use (a) numerically
unstable method(s).



US 9,262,271 B2

7

The missing value can be the result of any fault in the
computing system. In some embodiments it is due to miscom-
munication between processing units of the computing sys-
tem or due to a failed computation at a processing unit of the
computing system.

The method may further comprise detection of a fault, for
example by receipt of a notification from a message passing
interface MPI or by detection within the solver itself (in this
case most probably by non-receipt of an expected message
within some period of time).

According to an embodiment of a system aspect, there is
provided a computing system comprising a plurality of pro-
cessing units linked by an interconnect and configured to find
at least two versions of a computational solution in parallel
using a hierarchy of at least two different solvers: a smaller
subset of the processing units being arranged to compute one
version of the solution using a solver that is lower in the
hierarchy and a larger subset of the processing units being
arranged to compute the other version of the solution using a
solverthat is higher in the hierarchy; wherein if there is a fault
during execution of the solver that is higher in the hierarchy
resulting in a missing value, the interconnect is arranged to,
during execution of the solvers, substitute a value from the
solver that is lower in the hierarchy to replace the missing
value.

In a more specific embodiment of a system aspect there is
provided a high performance computing system comprising a
plurality of nodes linked by an interconnect and configured to
find at least two versions of a computational solution in par-
allel: a smaller subset of the nodes being arranged to compute
one version of the solution using a less accurate solver and a
larger subset of the nodes being arranged to compute the other
version of the solution using a more accurate solver; wherein
if there is a fault during execution of the more accurate solver
resulting in a missing value, the interconnect is arranged to,
during execution of the solvers, substitute a value from the
less accurate solver to replace the missing value in the more
accurate solver.

An embodiment of a computer program aspect of the
present invention provides a computer program, which when
executed on a computing system, carries out a method com-
prising: computing at least two versions of a computational
solution using a hierarchy of different solvers in parallel; if
there is a fault during execution of a solver resulting in a
missing value, substituting a value from a solver that is lower
in the hierarchy to replace the missing value; and using the
solution of the solver that is higher in the hierarchy as the
computational solution.

The computer program may be a controlling application
which includes the solvers or it may call separate programs or
subroutines which provide the solvers.

According to a further general program aspect there is
provided a program which when loaded onto a computing
apparatus such as a distributed computer system configures
the computing apparatus to carry out the method steps
according to any of the preceding method definitions or any
combination thereof.

Features and sub features of any of the different aspects of
the invention may be freely combined. For example, preferred
embodiments of the computer system may be configured to
incorporate functionality corresponding to one or more pre-
ferred features of the method.

The invention can be implemented in computer hardware,
firmware, software, or in combinations of them. The inven-
tion can be implemented as a computer program or computer
program product, i.e., a computer program tangibly embod-
ied in an information carrier, e.g., in a machine-readable

10

15

20

25

30

35

40

45

50

55

60

65

8

storage device or in a propagated signal, for execution by, or
to control the operation of, one or more hardware modules.

A computer program can be in the form of a computer
program portion or more than one computer program and can
be written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a data
processing environment. A computer program can be
deployed to be executed on one module or on multiple mod-
ules at one site or distributed across multiple sites and inter-
connected by a communication network.

Method steps of the invention can be performed by one or
more programmable processors executing a computer pro-
gram to perform functions of the invention by operating on
input data and generating output. Each processor may have
one or more cores.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital or biological computer. Generally, a pro-
cessor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for executing instruc-
tions coupled to one or more memory devices for storing
instructions and data.

The invention is described in terms of particular embodi-
ments. Other embodiments are within the scope of the fol-
lowing claims. For example, the steps of the invention can be
performed in a different order and still achieve desirable
results.

The apparatus according to preferred embodiments is
described as configured, operable or arranged to carry out
certain functions. This configuration or arrangement could be
by use of hardware or middleware or any other suitable sys-
tem. In preferred embodiments, the configuration or arrange-
ment is by software.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following
description of the embodiments, taken in conjunction with the
accompanying drawings of which:

FIG. 1 is a diagrammatic representation of hierarchical
solvers in a general embodiment of the invention;

FIG. 2 is an overview of hierarchical structure for fault-
tolerance;

FIG. 3a is a flow chart illustrating the path through execu-
tion of a distributed parallel computer program according to
the state of the art;

FIG. 354 is a flow chart comparison illustrating the path
through execution of a distributed parallel computer program
according to invention embodiments;

FIG. 4ais a plot showing the solution when solving the 1-d
diffusion equation;

FIG. 44 is a plot showing absolute errors when solving the
1-d diffusion equation;

FIG. 5 is a graph of the relationship between the number of
faults and the root-mean-square error of the solution for p in
the range 10~ to 0.1 when running the fault-tolerance method
for the same problem as in FIG. 4;

FIG. 6ais a plot showing the solution when solving the 1-d
diffusion equation (with K=0.1) until t=1 (with a time step of
107) on the interval [0, 1];



US 9,262,271 B2

9

FIG. 65 is a plot showing the absolute errors when solving
the 1-d diffusion equation (with K=0.1) until t=1 (with a time
step of 107) on the interval [0, 1]

FIG. 7 is a graph of the relationship between the number of
faults and the root-mean-square error of the solution for p in
the range 107> t0 0.1 when running the fault-tolerance method
for the same problem as in FIG. 6;

FIG. 8a is a further plot showing the solution when solving
the 1-d diffusion equation;

FIG. 854 is a further plot showing the absolute errors when
solving the 1-d diffusion equation; and

FIG. 9 is a hardware diagram illustrating the structure of a
computing system according to the invention.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments,
examples of which are illustrated in the accompanying draw-
ings, wherein like reference numerals refer to the like ele-
ments throughout. The embodiments are described below to
explain the present invention by referring to the figures.

FIG. 1 is an overview diagram of two different solvers
according to invention embodiments. Solver 1 is shown to the
left and solver 2 to the right. Other solvers may be present
within the hierarchy, as illustrated by the dotted lines of the
hierarchy arrow to the left and right of Solvers 1 and 2. Solver
2 is higher in the hierarchy, and its results are thus to be used
for the computational solution. It is shown in bold, and is
assumed to be better in some way, by dint of higher, accuracy,
complexity reliability etc.

At stage A, shown at the top of the figure, both solvers are
carrying out computations. This is shown by the division of'a
block into cells, although no particular reference to grid-
based solutions is intended, and the skilled reader will under-
stand that many more than the six computations illustrated
will usually be provided, and that the two solvers may each
include a different number of computations. One computa-
tion in solver 2 has failed.

At stage B, which may occur for example at the end of a
loop in the methodology, a value from solver 1 is substituted
(copied) into the corresponding computation in solver 2.
Whilst only one substitution is shown, more may be carried
out, consecutively or together. Furthermore, if the two solvers
include different numbers of computations and there is thus
no directly corresponding value, the substituted value may be
interpolated from the values in solver

At stage C, the solution is used from solver 2, including the
substituted value from solver 1, or including a value derived at
least partially from the substituted value.

FIG. 2 illustrates the hierarchical structure for fault toler-
ance according to invention embodiments. Three solvers are
shown here.

Atthe highest level (shown at the top of the diagram), most
of the available processes compute the solution to the accu-
racy required by the application. The lower levels (shown
below this accurate level) provide successively less accurate
(but faster to compute) solutions. Since these are faster to
compute they require fewer processes to achieve the same
run-time as the highest level. If a higher-level process suffers
a fault then the solution from the corresponding lower level
process is used instead. Note that this hierarchy could be
extended to more than three levels (or reduced to just two
levels).

In order to ensure that errors do not build up over time in the
fast solution, this is periodically re-initialized from the latest
version of the accurate solution (e.g. whenever data is syn-
chronized amongst the processes computing the accurate

15

30

35

40

45

55

10

solution, then this information should also be communicated
to those computing the fast solution).

FIGS. 3a and 35 show two flow charts illustrating the path
through execution of a distributed parallel computer program
with iterative execution, both in the prior art situation (with no
fault-tolerance) and using the method for fault-tolerant
execution of invention embodiments. In the prior art situation,
the application may crash whereas using the fault-tolerant
method the application is guaranteed to complete and return a
solution (assuming that there are only a small number of
faults compared to the overall number of CPUs). Note that
while this flow chart assumes two levels in the hierarchy this
could be extended to more levels.

Inthe prior art flow chart, the applications starts in step S10
and parallel computation is performed in step S20. In step S30
a fault in execution may be detected. If there is a fault the
application crashes in step S40. If not, then step S50 allows
the iterations in computation to continue until the program is
completed and a solution is returned in step S60.

Turning to the invention embodiments, the application
starts in step S100. In step S110, the accurate solution is
copied to the fast solution unless this is the first loop of
iteration. Processing divides into accurate computation (step
S120) and fast computation (step S140). In step S130 a fault
in accurate execution may be detected, and if so, the accurate
solution is fixed using values from the fast solution in step
S150. In step S160 there is a check for completion and loop
back to the copying step and computation if not. The solution
is returned if the program has reached completion in step
$170.

Validation

In order to validate the method a simple MATLAB proto-
type was implemented to solve the diffusion equation in the
presence of (simulated) faults. The diffusion equation (in 3-d)
can be written as:

Fu

Bu_ 13214+ N
=X 7z 77

Fu
W %)
where u(x, y, 7, t) is temperature, (X, y, ) is space, t is time
and is the diffusion coefficient. If this equation is to be solved
on the domain [0, 1]x[0, 1]x[0, 1] with boundary conditions
u=0 on the edges of the domain then there exist Fourier
solutions of the form

u(x, l):Be’)‘"z)‘z’ sin(xnx)sin(rmy)sin(rnz)

where B is a constant and n is a positive integer. Exact
solutions constructed from sums of these Fourier solutions
can be used to evaluate the accuracy of numerically computed
solutions. Solutions in fewer dimensions can be computed by
setting the spatial variables for the unwanted dimensions to
zero (e.g. z=0 for a 2-d solution and both y=0 and z=0 fora 1-d
solution).

The prototype fault-tolerant solver solves the heat equation
using the Crank-Nicolson method as the “accurate” solution
method and the forward Euler method as the “fast” solution
method. Note that the Crank-Nicolson method is implicit (but
second-order accurate), whereas the forward Euler method is
explicit (but first-order accurate). Implicit methods generally
require significantly more compute time than explicit.

Each finite element grid point is considered analogous to a
node in a distributed computer system. So, the value of the
solution at a grid point is taken to be representative of the data
that is stored in memory owned by a node in a larger simula-
tion. The assumption is that when a fault is suffered the



US 9,262,271 B2

11

application loses the ability to communicate with that node
(at least temporarily) and the data is lost.

Faults are randomly generated during the course of the
simulation. At each time step a vector of uniformly distributed
random numbers (one random number per spatial grid point)
is generated. If one or more of the random numbers are less
than a given threshold value p (the probability of a failure at
any given node in a single time step) then the grid points
corresponding to the positions of those numbers in the vector
are considered to have suffered a fault. In the event of a fault,
the value of u computed from the fast (explicit Euler) solve for
that time step is used in place of the value of u computed from
the accurate (Crank-Nicolson) solve. Note that this value is
used during the implicit solve in the accurate method in order
to simulate the failure of messages to be sent from the faulty
node.

FIG. 4a is a plot showing the solution and FIG. 45 is a plot
showing absolute errors when solving the 1-d diffusion equa-
tion (with=0.1) until t=1 (with a time step of 5x10-4) on the
interval [0, 1] (with a spatial step size of 0.01) and with an
initial condition u(x,0)=100 sin(3x) using the Crank-Nicol-
son method (dashed lines) and the fault-tolerant method (con-
tinuous lines) with p=10-4. Ten runs with random faults were
performed, with the number of faults in each being 16, 22, 19,
21,20,21, 19, 14,20 and 14. This choice of parameter values
corresponds to a CFL number of 0.5—for which the explicit
Euler method is numerically stable.

The probability of failure for each node at each time step is
p=10-4, resulting in between 14 and 22 faults over the runs.
Note that in each case the solutions (in FIG. 4a) are indistin-
guishable from one another, from the Crank-Nicolson solu-
tion and from the exact solution (dotted lines). The errors (in
FIG. 4b) are essentially equal to those obtained using the
Crank-Nicolson method, which is one of the central plots in
the spread of plots shown in this figure. The effect of varying
the probability of faults is shown in FIG. 5, which plots the
relationship between the number of faults and root-mean-
square error of the solution. It can be seen that while increas-
ing the number of faults leads to a loss of accuracy, there is
only a factor of three difference in the accuracy of the solution
with no faults and that when p=0.1.

For the problem used in FIG. 4 and FIG. 5, while the
accuracy of the simulation is not significantly reduced, cal-
culating the fast solution with the explicit Euler method is
only around 5x faster than calculating the accurate solution
with the Crank-Nicolson method. Note, however, that this
difference would increase for a larger problem size—e.g. if
the space step is decreased to 10-3 then the difference in
execution time is over 50x. Similarly, solving a 2- or 3-d
problem will lead to a larger system matrix and increase the
time difference between the use of implicit and explicit meth-
ods.

Note also, that it is possible to use a method that is not
numerically stable as the fast solver.

FIGS. 6a and 6b are plots showing solution (FIG. 6a) and
absolute errors (FIG. 6b) when solving the 1-d diffusion
equation (with=0.1) until t=1 (with atime step of 10-3) on the
interval [0, 1] (with a spatial step size of 0.01) and with an
initial condition u(x, 0)=100 sin(3x) using the Crank-Nicol-
son method (dashed lines) and the fault-tolerant method (con-
tinuous lines) with p=10-4. Ten runs with random faults were
performed, with the number of faults in each being 6, 8, 8, 5,
12,12, 8, 8, 10 and 8. This choice of parameter values corre-
sponds to a CFL number of 1.0—for which the explicit Euler
method is numerically unstable.

Thus FIGS. 6a and 65 show the results of repeating the
simulations used to generate FIGS. 4a and 45, but doubling

10

15

20

25

30

35

40

45

50

55

60

12

the time step to 10-3, so that the CFL number is 1.0 (the
explicit Euler method is numerically unstable for CFL num-
bers greater than 0.5). In these simulations there were
between 6 and 12 faults (there are fewer faults for the same
value of p as there are half as many time steps). Again, the
solutions obtained using the fault-tolerant method are indis-
tinguishable from both the exact solution (shown in dotted
lines) and Crank-Nicolson solution (FIG. 6a) and the errors
from both methods are of the same order of magnitude (FIG.
6b)—although it is clear from the size of the errors that in
general the fault tolerant solutions are less accurate than when
the fast solution was numerically stable. This can be seen
more clearly in FIG. 7, which shows the root-mean-square
errors for numerous fault tolerant runs with p between 10-5
and 0.1. Nevertheless, the errors grow only by around one
order of magnitude when moving from no faults to more than
10,000.

When only a small number of faults are anticipated, it may
be possible to use an even less numerically stable fast solver.
FIGS. 8a and 856 are plots showing solution and absolute
errors when solving the 1-d diffusion equation (with=0.1)
until t=1 (with a time step of 5x10-3) on the interval [0, 1]
(with a spatial step size of 0.01) and with an initial condition
u(x, 0)=100 sin(3x) using the Crank-Nicolson method
(dashed lines) and the fault-tolerant method (continuous
lines) with p=2x10-4. Ten runs with random faults were
performed, with the number of faults in each being 3, 4, 3, 4,
5,3, 3,5, 2 and 10. This choice of parameter values corre-
sponds to a CFL, number of 5—for which the explicit Euler
method is numerically unstable.

FIGS. 8a and 85 thus show the results of running the
simulation with a time step of 5x10-3, so that the CFL. num-
ber is 5.0—ten times greater than the maximum value at
which the explicit Euler method is stable. In these simulations
p=2x10-4, leading to between 2 and 10 faults. The solutions
from some of the fault-tolerant runs are now clearly distin-
guishable from the Crank-Nicolson and exact solutions (FIG.
8a) and the errors (FIG. 85) can be as much as ten times as
large as for the Crank-Nicolson method (which is one of the
plots with the smallest number of errors). Nevertheless, these
errors may be considered acceptable given how far past
numerical stability the fast solver has been pushed.

FIG. 9 shows a schematic diagram illustrating n+1 pro-
cesses, of which only two processes (60), referred to specifi-
cally as Process 0 and Process n are shown. The hardware
resources which the processes execute on is part of a com-
puter system 50 (not shown). Each process uses individual
resources including a single processing unit or element (70)
and memory (80). The processing unit (70) is connected to an
input/output unit (90) and the processes can be intercon-
nected using interconnect (100). If process 0 belongs to a fast
solver, and process n is a corresponding process of an accu-
rate solver, then a value stored in memory for process 0 can be
copied to memory for process n via interconnect 100, in the
event that there is a fault in the accurate solver.

Embodiments of the invention can provide:

An algorithm to ensure that an application will run to
completion and return a result, even in the presence of
faults (assuming that the number of faults is small rela-
tive to the number of CPUs)—see FIG. 3 for an overview
of how the path through execution of the application
guarantees this.

The computation of multiple versions of the solution at
different levels of accuracy, with the less accurate solu-
tions requiring very much less CPU time.



US 9,262,271 B2

13

The use of values from the less accurate versions of the
solution to replace missing values that are lost from the
more accurate version of the solution in the event of a
fault.

Re-initialization of the less accurate versions of the solu-
tion using the latest values of the more accurate versions
to ensure that the fall-back solutions do not diverge too
far from the most accurate solution.

It may not be necessary for the less accurate solvers to be
numerically stable in order for the overall accuracy of
the fault-tolerant method to be acceptable.

The method of invention embodiments can have the fol-

lowing benefits over the existing state-of-the-art:

No reliance on an underlying MPI implementation to
handle faults (other than the requirement that applica-
tion execution is not automatically terminated by the
MPI on detection of a fault).

There is no need for processes to wait while computation
on a faulty node since the last checkpoint is recomputed
(or while the work is reassigned amongst a task pool)—
the fast solution is computed at the same time as the
accurate solution.

There is little cost in overall execution time from comput-
ing the fast solution as only a very small number of
processes are required to do this (c.f. standard replica-
tion of work in which 50% of available resources must
be used for the replicated work).

There are no underlying assumptions made about the
nature of the application (e.g. grid-based)—any appli-
cation for which it is possible to make a trade-off
between accuracy and compute time is tractable to this
solution.

Although a few embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these embodiments without
departing from the principles and spirit of the invention, the
scope of which is defined in the claims and their equivalents.

What is claimed is:

1. A method of improving fault tolerance in a computing
system arranged to find a computational solution, the method
comprising:

computing at least two versions of the solution by using a
hierarchy of at least two different solvers in parallel; and

if there is a fault during execution of a first solver resulting
in a missing value, substituting a value from a second
solver that is lower in the hierarchy to replace the miss-
ing value.

2. A method according to claim 1, wherein two different
solvers are a less accurate solver and a more accurate solver
and

if there is a fault during execution of the more accurate
solver resulting in a missing value, a value from the less
accurate solver is substituted to replace the missing
value in the more accurate solver.

3. A method according to claim 2, wherein each solver
executes in a number of processes hosted on the computing
system, the less accurate solver being split into fewer pro-
cesses, and wherein the less accurate solver processes
account for less than less than 1% of the total number of
processes for both solvers.

4. A method according to claim 2, wherein the less accurate
solver uses a computationally less intensive approximation
than the more accurate solver to compute the solution.

5. A method according to claim 2, wherein a more accurate
solver methodology includes periodic synchronization of val-
ues across a computation, and the less accurate solver is

20

40

45

55

60

14

periodically refreshed with a most recently synchronized val-
ues from the more accurate solver.

6. A method according to claim 1, wherein the computing
system comprises multiple processing units, and preferably
wherein the less accurate solver executes on fewer processing
units than the more accurate solver.

7. A method according to claim 1, wherein value substitu-
tion is managed by a controlling application to provide a
current value from the solver that is lower in the hierarchy to
substitute into the computation in the solver from which the
value is missing.

8. A method according to claim 1, wherein the computing
system is a multiple CPU system and a high performance
computing HPC system.

9. A method according to claim 1, wherein three or more
different versions of the solution are computed using a hier-
archy of three or more solvers of different accuracy levels, the
method comprising:

computing the three or more versions of the solution by
using all the solvers in parallel; and

during execution of the solvers, substituting a value from a
less accurate solver to replace a missing value in a more
accurate solver one level in the hierarchy above the less
accurate solver in the hierarchy.

10. A method according to claim 1, further comprising,
during execution of the solvers, substituting a value one of
from the solver that is higher in the hierarchy and from a
duplicate solver for the solver that is lower in the hierarchy to
replace a missing value in the solver that is lower in the
hierarchy resulting from a fault in the execution of that solver.

11. A method according to claim 1, wherein the solver that
is lower in the hierarchy uses a numerically unstable method.

12. A method according to claim 1, wherein the missing
value is one of due to miscommunication between processing
units of the computing system and due to a failed computation
at a processing unit of the computing system.

13. A method according to claim 1, further comprising
detection of a fault is one of by receipt of a notification from
amessage passing interface and by detection within the solver
itself.

14. A computing system comprising a plurality of process-
ing units linked by an interconnect and configured to find at
least two versions of a computational solution in parallel
using a hierarchy of at least two different solvers:

a smaller subset of the processing units being arranged to
compute one version of the solution using a solver that is
lower in the hierarchy and a larger subset of the process-
ing units being arranged to compute other version of the
solution using a solver that is higher in the hierarchy;

wherein if there is a fault during execution of the solver that
is higher in the hierarchy resulting in a missing value, the
interconnect is arranged to, during execution of the solv-
ers, substitute a value from the solver that is lower in the
hierarchy to replace the missing value.

15. A non-transitory computer-readable storage medium
tangibly embodying a computer program, which when
executed on a computing system, carries out a method com-
prising:

computing at least two versions of a computational solu-
tion using a hierarchy of different solvers in parallel;

if there is a fault during execution of a solver resulting in a
missing value, substituting a value from a solver that is
lower in the hierarchy to replace the missing value; and

using the solution of the solver that is higher in the hierar-
chy as the computational solution.

#* #* #* #* #*



